Home » » Tendensi Sentral: Median

Tendensi Sentral: Median

Posted by Kumpulan Catatan Nana Misnara on Selasa, 24 Februari 2015

Median atau nilai tengah adalah nilai pengamatan yang terletak di tengah gugus data setelah data tersebut diurutkan. Median membagi himpunan pengamatan menjadi dua bagian yang sama besar, 50% dari pengamatan terletak di bawah median dan 50% lagi terletak di atas median.

Median sering dilambangkan dengan \tilde{x} (dibaca “x-tilde”) apabila sumber datanya berasal dari sampel \tilde{\mu} (dibaca “μ-tilde”) untuk median populasi. Median tidak dipengaruhi oleh nilai-nilai aktual dari pengamatan melainkan pada posisi mereka.
Prosedur untuk menentukan nilai median, pertama urutkan data terlebih dahulu, kemudian ikuti salah satu prosedur berikut ini:
  • Banyak data adalah ganjil → mediannya adalah nilai yang berada tepat di tengah gugus data
  • Banyak data adalah genap → mediannya adalah rata-rata dari dua nilai data yang berada di tengah gugus data

a. Median data tunggal Untuk menentukan median dari data tunggal, terlebih dulu kita harus mengetahui letak/posisi median tersebut. Posisi median dapat ditentukan dengan menggunakan formula berikut:
Posisi Median=\dfrac{(n+1)}{2}
dimana n = banyaknya data pengamatan.

Median apabila n ganjil:
Contoh 1:Hitunglah median dari nilai ujian matematika kelas 3 SMU berikut ini:
8; 4; 5; 6; 7; 6; 7; 7; 2; 9; 10
Jawab:
  • data: 8; 4; 5; 6; 7; 6; 7; 7; 2; 9; 10
  • setelah diurutkan: 2; 4; 5; 6; 6; 7; 7; 7; 8; 9; 10
  • banyaknya data (n) = 11
  • posisi Me = ½(11+1) = 6
  • jadi Median = 7 (data yang terletak pada urutan ke-6)
Nilai Ujian245667778910
Urutan data ke-1234567891011











Median apabila n genap:
Contoh 2:
Hitunglah median dari nilai ujian matematika kelas 3 SMU berikut ini:
8; 4; 5; 6; 7; 6; 7; 7; 2; 9
Jawab:
  • data: 8; 4; 5; 6; 7; 6; 7; 7; 2; 9
  • setelah diurutkan: 2; 4; 5; 6; 6; 7; 7; 7; 8; 9
  • banyaknya data (n) = 10
  • posisi median= ½(10+1) = 5.5
  • data tengahnya: 6 dan 7
  • jadi Median = ½ (6+7) = 6.5 (rata-rata dari 2 data yang terletak pada urutan ke-5 dan ke-6)
Nilai Ujian2456677789
Urutan data ke-12345678910










b. Median dalam distribusi frekuensi
Formula untuk menentukan median dari tabel distribusi frekuensi adalah sebagai berikut:
Me{\rm{ = b + p}}\left( {\dfrac{{\dfrac{{\rm{1}}}{{\rm{2}}}{\rm{n - F}}}}{{\rm{f}}}} \right)
b = batas bawah kelas median dari kelas selang yang mengandung unsur atau memuat nilai median
p = panjang kelas median
n = ukuran sampel/banyak data
f = frekuensi kelas median
F = Jumlah semua frekuensi dengan tanda kelas lebih kecil dari kelas median (∑fi)
Contoh 3:Tentukan nilai median dari tabel distribusi frekuensi pada Contoh 3 pada Tendensi Sentral: Mean!
Jawab:
Kelas ke-Nilai Ujianfifkum
131 – 4022
241 – 5035
351 – 60510
461 – 701323
571 – 802447←letak kelas median
681 – 902168
791 – 1001280
8Jumlah80

  • Letak kelas median: Setengah dari seluruh data = 40, terletak pada kelas ke-5 (nilai ujian 71-80)
  • b = 70.5, p = 10
  • n = 80, f = 24
  • f = 24 (frekuensi kelas median)
  • F = 2 + 3 + 5 + 13 = 23


0 komentar:

Posting Komentar

Arsip Blog

Entri Populer

Mengenai Saya

Foto saya
Majalengka, Jawa Barat, Indonesia
.comment-content a {display: none;}